
Stony Brook University

Computer Science Department

Programmable Graphics Hardware

(GPU)

A Primer

Klaus Mueller

Parallel Computing Explained

video

The Mythbusters paint the Mona Lisa in HD (1).mp4

Parallel Computing Explained

Any questions?

Parallelism

What you just saw was an embarrassingly parallel task

• no or very little communication among parallel tasks

Most computational problems are not like that

Parallelism

On the other hand, some processes are not parallel at all

• are they embarrassingly sequential?

Need to find and gauge where the parallelism is

Types of Parallelism

Task based parallelism

• unrelated processes are executed in parallel

• slowest process determines the speed

• also known as coarse grained parallelism

• MIMD model = Multiple Instructions Multiple Data

Data based parallelism

• decompose a specific task into threads

• each thread executes the same statement at the same time

• also known as fine grained parallelism

• SIMD model = Single Instructions Multiple Data

Patterns of Parallelism

Loops

• for and while statements

• Fork and Join

Tiling and grids

• break the domain into sub-problems that
map well to the hardware

• 2D tiles/grid for images, 3D tiles/grid for volumes

Divide and Conquer

• recursion: can present problems for parallelism when too deep

• better use an iterative approach that solves a level in parallel

Speedup Curves

Amdahl’s Law

Governs theoretical speedup

P: parallelizable portion of the program

S: speedup

N: number of parallel processors

N

P
P

S

P
P

S

parallel









)1(

1

)1(

1

Amdahl’s Law

Governs theoretical speedup

P: parallelizable portion of the program

S: speedup

N: number of parallel processors

P determines theoretically achievable speedup

• example (assuming infinite N): P=90%  S=10

 P=99%  S=100

N

P
P

S

P
P

S

parallel









)1(

1

)1(

1

Amdahl’s Law

How many processors to use

• when P is small  a small number of processors will do

• when P is large (embarrassingly parallel)  high N is useful

Speedup Curves

Beyond Theory….

GPUs are more than parallel computing

There are certain features that provide a turbo boost

• special ASIC circuits for frequent operations

• latency hiding by rapid thread switching

• special memory organization for 2D data

• schedulers

• managers

• APIs, drivers

• caches

• dedication to

 computing

Focus Efforts on Most Beneficial

Optimize program portion with most ‘bang for the buck’

• look at each program component

• don’t be ambitious in the wrong place

Example:

• program with 2 independent parts: A, B (execution time shown)

• sometimes one gains more with less

Programming Strategy

Use GPU to complement CPU execution

• recognize parallel program segments and only parallelize these

• leave the sequential (serial) portions on the CPU

sequential portions (do not bite)

parallel portions (enjoy)

PPP (Peach of Parallel Programming – Kirk/Hwu)

The Hardware …. NVIDIA Fermi

SM (Streaming
Multiprocessor)

On chip:

SMs: up 16

CUDA cores: 32/SM → up to 512/chip

CUDA Core
has 32 Streaming Processors
(SP) = CUDA core

The Hardware …. NVIDIA Fermi

4 special function units (sin, cosine,
reciprocal, and square root)

full cross-bar interface

32 CUDA Cores

Host and Device

Host → CPU

• controls program flow

• manages threads

• loads GPU programs (kernels)

• has host memory

Device → GPU

• loads data

• performs computations

• has device memory

Heterogeneous programming model

Parallelism Exposed as Threads

Thread management:

• all threads run the same code

• a thread runs on one core

The threads divide into blocks

• each block has a unique ID  block
ID

• each thread has a unique ID within a
block  thread ID

• block ID and thread ID can be used
to compute a global ID

The blocks form a grid

Block/grid size can be set in program

An Important Player: Memory

Grid

Constant

Memory

Texture

Memory

Global

Memory

Block (0, 0)

Shared Memory

Local

Memory

Thread (0, 0)

Registers

Local

Memory

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Local

Memory

Thread (0, 0)

Registers

Local

Memory

Thread (1, 0)

Registers

CUDA threads may access data
from multiple memory spaces:

Thread-level

• registers (fast)

• local memory to handle register spills
(slow)

Block-level

• shared memory

Grid-level

• global memory (slowest)

• constant memory (read-only)

• texture memory (cached, read-only)

• surface memory (writable texture)

Latency Hiding -- Revisited

Latency hiding is a form of hardware multi-threading

Major source of the speedup of GPUs

• a new set of threads (called warps = 32 threads) is switched to
within one clock cycle whenever one of the threads in the currently
active set stalls

But….hardware multi-threading requires memory

• contexts of all these threads must be maintained in memory

• this typically limits the amount of threads that can be simultaneously
maintained for latency hiding

• so there is a tradeoff

Avoid Latency – Exploit Locality

Temporal locality

• data that was accessed before will be likely accessed again

• use cache to reduce access latencies

Spatial locality

• data close to the data accessed last will likely be accessed soon

• fetch entire cache lines when accessing one element

Exploit locality by

• storing data in shared memory

• configure hardware caches (L2, CUDA vs. self-managed shared
memory)

• e.g., split 64 KB/block into 48 KB CUDA cache and 16 KB self-
managed (Fermi and higher)

Next – Small Example

Programmed in CUDA

CUDA = Compute Unified Device Architecture

• C-like language

• language and API created by NVIDIA

• libraries available (cuBLAS, cuFFT, Thrust, …)

Vector Add – CPU

void vectorAdd(float *A, float *B, float *C, int N) {

 for(int i = 0; i < N; i++)

 C[i] = A[i] + B[i]; }

int main() {

 int N = 4096;

 // allocate and initialize memory

 float *A = (float *) malloc(sizeof(float)*N);

 float *B = (float *) malloc(sizeof(float)*N);

 float *C = (float *) malloc(sizeof(float)*N);

 init(A); init(B);

 vectorAdd(A, B, C, N); // run kernel

 free(A); free(B); free(C);} // free memory

Vector Add – GPU (kernel program)

__global__ void gpuVecAdd(float *A, float *B, float *C) {

 int tid = blockIdx.x * blockDim.x + threadIdx.x

 C[tid] = A[tid] + B[tid]; }

(0,0), (1,0) …. (31,0)

threadIdx.x

blockIdx.x

blockDim.x=32

tid = blockId.x * blockDim.x + threadIdx.x

Vector Add – GPU (host program)

int main() {

 int N = 4096; // allocate and initialize memory on the CPU

 float *A = (float *) malloc(sizeof(float)*N);

 float *B = (float *) malloc(sizeof(float)*N); *C = (float*)malloc(sizeof(float)*N)

 init(A); init(B);

 // allocate and initialize memory on the GPU

 float *d_A, *d_B, *d_C;

 cudaMalloc(&d_A, sizeof(float)*N);

 cudaMalloc(&d_B, sizeof(float)*N); cudaMalloc(&d_C, sizeof(float)*N);

 cudaMemcpy(d_A, A, sizeof(float)*N, HtoD);

 cudaMemcpy(d_B, B, sizeof(float)*N, HtoD);

 // configure threads

 dim3 dimBlock(32,1);

 dim3 dimGrid(N/32,1);

 // run kernel on GPU

 gpuVecAdd <<< dimBlock,dimGrid >>> (d_A, d_B, d_C);

 // copy result back to CPU

 cudaMemcpy(C, d_C, sizeof(float)*N, DtoH);

 // free memory on CPU and GPU

 cudaFree(d_A); cudaFree(d_B); cudaFree(d_C); free(A); free(B); free(C); }

Common Optimizations

Loop unrolling

• reduces arithmetic and creates better vectorization

Loop fusion

• but check for dependencies

Thread fusion

• increases workload for threads

Kernel fusion

• encourages data reuse

Collaborative load into shared memory

• when memory indexing is irregular

Larger blocks

• more threads can better hide memory latency

• but more threads require more registers  trade-off

NVIDIA Kepler Architecture

Kepler GK110 Die Photo

16 Streaming Multiprocessors (SMX)

One SMX

 192 single-
precision
CUDA cores

 64 double-
precision units

 32 special
function units
(SFU)

 32 load/store
units (LD/ST)

High Performance Computing on the Desktop

PC graphics boards featuring GPUs:

• NVIDIA GeForce, ATI Radeon

• available at every computer store for less
than $500

• set up your PC in less than an hour and play

the latest board:

 NVIDIA GeForce GTX 980

“Just” Computing

Compute-only (no graphics): NVIDIA Tesla K and M series

True GPGPU

(General Purpose
Computing using
GPU Technology)

Bundle 8 cards into a server: 5,280 processors, 192 GB memory

24 GB memory
per card, 560
processors

$4,000

K 80

Relevance to Visualization

Volume rendering is a compute-intensive tasks

• it has also a high degree of parallelism

• for example, we can cast the rays in parallel

There are also many compute intensive tasks in data science

• the challenge is to find the parallelism

• for example, each iteration of k-means can be run in parallel

• but the iterations themselves are sequential.

