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Parallel Computing Explained 

 

 

 

 

Any questions? 



Parallelism 

What you just saw was an embarrassingly parallel task 

• no or very little communication among parallel tasks 

 

 

 

 

 

 

 

 

Most computational problems are not like that   



Parallelism 

On the other hand, some processes are not parallel at all 

• are they embarrassingly sequential?  

 

 

 

 

 

 

Need to find and gauge where the parallelism is 



Types of Parallelism 

Task based parallelism 

• unrelated processes are executed in parallel 

• slowest process determines the speed 

• also known as coarse grained parallelism 

• MIMD model = Multiple Instructions Multiple Data 

 

Data based parallelism 

• decompose a specific task into threads 

• each thread executes the same statement at the same time 

• also known as fine grained parallelism 

• SIMD model = Single Instructions Multiple Data 

 



Patterns of Parallelism 

Loops 

• for and while statements 

• Fork and Join 

 

Tiling and grids 

• break the domain into sub-problems that                                            
map well to the hardware 

• 2D tiles/grid for images, 3D tiles/grid for volumes 

 

 

Divide and Conquer 

• recursion: can present problems for parallelism when too deep 

• better use an iterative approach that solves a level in parallel   

 

 



Speedup Curves 



Amdahl’s Law 

Governs theoretical speedup 

 

 

 

P: parallelizable portion of the program 

S: speedup 

N: number of parallel processors 
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Amdahl’s Law 

Governs theoretical speedup 

 

 

 

P: parallelizable portion of the program 

S: speedup 

N: number of parallel processors 

 

P determines theoretically achievable speedup 

• example (assuming infinite N): P=90%  S=10 

                       P=99%  S=100 
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Amdahl’s Law 

How many processors to use 

• when P is small  a small number of processors will do 

• when P is large (embarrassingly parallel)  high N is useful   

 

 



Speedup Curves 



Beyond Theory…. 

GPUs are more than parallel computing 

 

There are certain features that provide a turbo boost  

• special ASIC circuits for frequent operations 

• latency hiding by rapid thread switching 

• special memory organization for 2D data 

• schedulers  

• managers 

• APIs, drivers  

• caches 

• dedication to  

       computing  

 

 



Focus Efforts on Most Beneficial 

Optimize program portion with most ‘bang for the buck’ 

• look at each program component  

• don’t be ambitious in the wrong place 

 

Example: 

• program with 2 independent parts: A, B (execution time shown) 

 

 

 

 

 

 

 

• sometimes one gains more with less 



Programming Strategy 

Use GPU to complement CPU execution 

• recognize parallel program segments and only parallelize these 

• leave the sequential (serial) portions on the CPU 

 

sequential portions (do not bite) 

parallel portions (enjoy) 

PPP (Peach of Parallel Programming – Kirk/Hwu) 



The Hardware …. NVIDIA Fermi 

SM (Streaming 
Multiprocessor)  

On chip: 

SMs: up 16 

CUDA cores: 32/SM → up to 512/chip 

CUDA Core 
has 32 Streaming Processors 
(SP) = CUDA core 



The Hardware …. NVIDIA Fermi 

4 special function units (sin, cosine, 
reciprocal, and square root)  

full cross-bar interface 

32 CUDA Cores 



Host and Device 

Host → CPU 

•   controls program flow 

•   manages threads 

•   loads GPU programs (kernels) 

•   has host memory 

 

Device → GPU  

•   loads data 

•   performs computations 

•   has device memory 

 

Heterogeneous programming model 



Parallelism Exposed as Threads  

Thread management: 

• all threads run the same code 

• a thread runs on one core 

The threads divide into blocks 

• each block has a unique ID  block 
ID 

• each thread has a unique ID within a 
block  thread ID 

• block ID and thread ID can be used 
to compute a global ID 

The blocks form a grid 

Block/grid size can be set in program 

 



An Important Player: Memory 

Grid 

Constant 
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Texture 
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Registers 

CUDA threads may access data                               
from multiple memory spaces: 

Thread-level 

• registers (fast) 

• local memory to handle register spills 
(slow) 

Block-level  

• shared memory 

Grid-level  

• global memory (slowest) 

• constant memory (read-only) 

• texture memory (cached, read-only) 

• surface memory (writable texture) 

 



Latency Hiding -- Revisited 

Latency hiding is a form of hardware multi-threading 

Major source of the speedup of GPUs 

• a new set of threads (called warps = 32 threads) is switched to 
within one clock cycle whenever one of the threads in the currently 
active set stalls 

 

But….hardware multi-threading requires memory 

• contexts of all these threads must be maintained in memory 

• this typically limits the amount of threads that can be simultaneously 
maintained for latency hiding 

• so there is a tradeoff 



Avoid Latency – Exploit Locality 

Temporal locality 

• data that was accessed before will be likely accessed again 

• use cache to reduce access latencies 

 

Spatial locality 

• data close to the data accessed last will likely be accessed soon 

• fetch entire cache lines when accessing one element 

 

Exploit locality by 

• storing data in shared memory  

• configure hardware caches (L2, CUDA vs. self-managed shared 
memory) 

• e.g., split 64 KB/block into 48 KB CUDA cache and 16 KB self-
managed  (Fermi and higher) 



Next – Small Example 

Programmed in CUDA 

 

CUDA  = Compute Unified Device Architecture 

• C-like language 

• language and API created by NVIDIA 

• libraries available (cuBLAS, cuFFT, Thrust, …) 



Vector Add – CPU 

void vectorAdd(float *A, float *B, float *C, int N) { 

 for(int i = 0; i < N; i++) 

        C[i] = A[i] + B[i]; } 

 

 

int main() { 

 int N = 4096;   

  // allocate and initialize memory 

 float *A = (float *) malloc(sizeof(float)*N);     

 float *B = (float *) malloc(sizeof(float)*N);     

 float *C = (float *) malloc(sizeof(float)*N); 

 init(A); init(B); 

 

 vectorAdd(A, B, C, N);  // run kernel 

 free(A); free(B); free(C);} // free memory 



Vector Add – GPU (kernel program) 

__global__ void gpuVecAdd(float *A, float *B, float *C) { 

      int tid = blockIdx.x * blockDim.x + threadIdx.x 

      C[tid] = A[tid] + B[tid]; } 

(0,0),  (1,0)    ….  (31,0)       

threadIdx.x 

blockIdx.x 

blockDim.x=32 

tid = blockId.x * blockDim.x + threadIdx.x 



Vector Add – GPU (host program) 

int main() { 

 int N = 4096; // allocate and initialize memory on the CPU 

 float *A = (float *) malloc(sizeof(float)*N);  

           float *B = (float *) malloc(sizeof(float)*N); *C = (float*)malloc(sizeof(float)*N) 

 init(A); init(B); 

  // allocate and initialize memory on the GPU 

 float *d_A, *d_B, *d_C; 

 cudaMalloc(&d_A, sizeof(float)*N);    

 cudaMalloc(&d_B, sizeof(float)*N);     cudaMalloc(&d_C, sizeof(float)*N); 

 cudaMemcpy(d_A, A, sizeof(float)*N, HtoD);     

 cudaMemcpy(d_B, B, sizeof(float)*N, HtoD); 

  // configure threads 

 dim3 dimBlock(32,1); 

 dim3 dimGrid(N/32,1); 

  // run kernel on GPU 

 gpuVecAdd <<< dimBlock,dimGrid >>> (d_A, d_B, d_C); 

  // copy result back to CPU 

 cudaMemcpy(C, d_C, sizeof(float)*N, DtoH); 

  // free memory on CPU and GPU 

 cudaFree(d_A);   cudaFree(d_B);    cudaFree(d_C);   free(A);   free(B);   free(C); } 

 



Common Optimizations 

Loop unrolling 

• reduces arithmetic and creates better vectorization 

Loop fusion 

• but check for dependencies 

Thread fusion 

• increases workload for threads 

Kernel fusion  

• encourages data reuse 

Collaborative load into shared memory 

• when memory indexing is irregular  

Larger blocks 

• more threads can better hide memory latency  

• but more threads require more registers  trade-off 

 

 

 

 



NVIDIA Kepler Architecture 

Kepler GK110 Die Photo 



16 Streaming Multiprocessors (SMX) 



One SMX 

 192 single-
precision 
CUDA cores 

 64 double-
precision units  

 32 special 
function units 
(SFU) 

 32 load/store 
units (LD/ST) 



High Performance Computing on the Desktop 

PC graphics boards featuring GPUs: 

• NVIDIA GeForce, ATI Radeon 

• available at every computer store for less                                 
than $500 

• set up your PC in less than an hour and play 

the latest board:  

   NVIDIA GeForce GTX 980 



“Just” Computing 

Compute-only (no graphics): NVIDIA Tesla K and M series 

  

True GPGPU  

(General Purpose 
Computing using 
GPU Technology) 

Bundle 8 cards into a server: 5,280 processors, 192 GB memory 

24 GB memory 
per card, 560 
processors 

$4,000 

K 80 



Relevance to Visualization  

Volume rendering is a compute-intensive tasks 

• it has also a high degree of parallelism  

• for example, we can cast the rays in parallel  

 

There are also many compute intensive tasks in data science 

• the challenge is to find the parallelism 

• for example, each iteration of k-means can be run in parallel  

• but the iterations themselves are sequential.  

 


